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A survey of recent developments concerning rigorously defined infinite dimen-
sional integrals, mainly of the type of ‘‘Feynman path integrals,’’ is given. Both
the theory and its applications, especially in quantum theory, are presented. As
for the theory, general results are discussed including the case of polynomially
growing phase functions, which are handled by exploiting the connection with
probabilistic functional integrals. Also applications to continuous measurement
theory and the stochastic Schrödinger equation are given. Other applications of
probabilistic methods in non relativistic quantum theory and in quantum field
theory, and their relations with statistical mechanics, are discussed.
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4 These connections were discussed a bit more extensively in the lecture given by the first
named author.

It is a great pleasure to dedicate this paper to Gianni Jona-Lasinio on the
occasion of his 70th birthday—as a small sign of deep gratitude.
The topic of the present work belongs to just one of several areas the first

named author had the opportunity and pleasure to discuss with Gianni over many
years, always appreciating his genuine sense for what is essential in mathematical
physics and receiving from him new motivations and ideas.
The main body of this paper is Section 2, where we give a rather detailed dis-

cussion of some new developments concerning particular aspects of path integral
methods in quantum theory. In Sections 1 and 3 we take the opportunity to
mention some other connections with work and interests of Gianni, even though
time and space do not permit to present them here in any details.4



1. PROBABILISTIC METHODS IN QUANTUM MECHANICS

Let us take as starting point the connection between quantum dynamics, as
given by a family of unitary operators Ut=e−itH, t ¥ R being the time vari-
able and H the (lower semibounded) Hamiltonian, and the corresponding
heat equation evolution semigroup Uy=e−yH, y \ 0. Heuristically, but also
rigorously under some assumptions on H, Uy is the analytic continuation of
Ut for ‘‘imaginary time’’ (i.e., for t replaced by −iy). The corresponding
functional representation for H of the Schrödinger form − D2+V in
L2(Rd, dx), with a suitable real-valued potential V, is, for the heat equa-
tion, given by the Feynman–Kac formula

Uyf(x)=F e−>
y

0 V(w(s)) dsf(w(y)) Px(dw), (1)

Px being Wiener measure giving the distribution of the Wiener (or Brownian
motion) process (w(s), 0 [ s [ t) started at x ¥ Rd at time 0, f the initial
condition. Let us stress that (1) is a well defined integral (e.g., for V, f
bounded and continuous.

Heuristically we have

e−>
y

0 V(w(s)) dsPx(dw)=‘‘Z−1e−S
E
y (w) Dw’’ — PxE(dw), (2)

with SEy the euclidean action functional,

SEy (w)=S
0
y(w)+F

y

0
V(w(s)) ds, S0y(w) —

1
2 F

y

0
|ẇ(s)|2 ds (3)

Z is the normalization (‘‘heuristic free partition function’’)

Z=‘‘ F e−S
0
y (w) Dw’’ (4)

with Dw a ‘‘flat measure’’ (the E in PEx stands for ‘‘euclidean’’). One writes

Uyf(x)=EPxE f(w(y)) (5)

(with EQ — expectation with respect to the measure Q). We can write, in the
sense of linear functionals

Uyf(x)=Of( · ), PxE( · )P (6)

(O , P being the dualization between a space of function f, say Cb(W), and
the space of finite measures on W — C([0, t]; R)).
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Similarly, for the solutions of the corresponding Schrödinger evolution
one can expect, following Feynman (see Section 2), a formula of the type

Utf(x)=Of( · ), PxF( · )P, (7)

where the r.h.s. has to be understood as the evaluation at f of a (linear
continuous) ‘‘Feynman path functional’’ (usually called Feynman path
integral). PxF (where F stands for ‘‘Feynman’’) is heuristically obtained by
replacing the exponents e−S

E
y (w) in (2) and e−S

0
y (w) in (4) with e

i
(
St(w) and

e
i
(
S 0t (w) respectively, where St is the ‘‘classical action functional’’ defined as
SEt in (3) but with V replaced by −V.

Whereas Feynman–Kac formula (1) holds essentially for any V having
negative part with not too strong singularities and H lower bounded, the
above Feynman formula (7), holds essentially for any continuous V (not
necessarily such that H is lower bounded), see Section 2 for a further dis-
cussion of Feynman path integrals. Let us remark that for historical
reasons (to conform to the original presentation of Feynman) (see, e.g.,
ref. 44) (7) is usually rewritten, using the invariance of PxF(dw) under the
transformation induced in W by sW y−s, as Utf(x)=Of( · ), P̃xF( · )P, with
P̃xF defined as PxF, but with the space of paths replaced by the one where
the paths end at time t at x (and start anywhere at the initial time zero).
In Section 2 we shall use this representation and denote the paths by c in
order not to confuse them with the previous paths.

One way to understand the principle of this, is to realize that for a
large class of V (see, e.g., ref. 69), H, as an operator on L2(Rd, dx), has
a strictly positive eigenfunction f in L2(Rd, dx), called ‘‘ground state,’’ such
that H \ c, for some c >−., and Hf=cf. Then (H−c) is unitary
equivalent to a self-adjoint positive operator Hm in L2(Rd, m), with
m(dx) — f2(x) dx, the unitary equivalence being given by f ¥ L2(Rd, dx)
Y f

f ¥ L
2(Rd, m), so that e−it(H−c)f=fe−itHmf−1f. A simple computation

shows that Hm is the self-adjoint operator uniquely associated with the
closed sesquilinear form Em(f, g) —

1
2 > Nf̄ Ng dm, f, g ¥ D(N), N being the

natural gradient operator from L2(Rd, m) to L2(Rd, m) é Rd (see, e.g.,
ref. 2). Em is the natural extension to the complex L2(Rd, m) of the classical
Dirichlet form given by m. Under some weak regularity assumptions on f

(which, can be reinterpreted in terms of regularity assumptions on V), there
exists a measurable ‘‘drift vector,’’ bm (on Rd with values in Rd), such that
Hm=−

1
2 D−bmN (on a dense domain) in L2(Rd, m). By the theory of

Dirichlet forms the corresponding semigroup (e−yHm)y \ 0 is the transition
semigroup of a diffusion process X(y), y \ 0 on Rd, satisfying a stochastic
differential equation of Langevin’s type: dX(y)=bm(X(y)) dy+dw(y), with
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(w(s), s ¥ [0, y]) a standard Brownian motion on Rd. The initial distribu-
tion can be taken to be any point in Rd, m is an invariant measure for X(y).
One has in particular for any g ¥ Cb(Rd):

(e−yHmg)(x)=Ex|X(g(X(y)))=Ex[e−
1
2
>y0 b(w(s))

2 dse−>
y

0 b(w(s)) dw(s)g(w(y))]

(with Ex|X the expectation with respect to the distribution of X started at
x and Ex the one with respect to the Wiener measure Px). The density
e−>

y
0 b(w(s))

2 dse−>
y
0 b(w(s)) dw(s) with respect to the Wiener measure Px(dw) is called

Girsanov functional. Combining this formula with

e−yHm=f−1e−y(H−c)f

we also obtain

(e−yHmg)(x)=f−1(x) Ex[e−>
y

0 V(w(s)) dsf(w(y)) g(w(y))].

These are just a few examples of transformation formulae which constitutes
the basis of stochastic analysis. In particular the representations relating
the Dirichlet operator Hm and X extend to more general situations, where
the state space and the coefficients can be ‘‘singular’’ and the state space Rd

is replaced by some possibly infinite-dimensional state space. See, e.g.,
refs. 1, 2, 54, and references therein for these connections. The work of
Jona-Lasinio and his coworkers has played an essential role in pointing out
the relations between processes like the above X and quantum theory pro-
viding new insights in vast areas of stochastic analysis and quantum theory
(in the non relativistic theory as well as the relativistic one, in particular in
connection with Nelson’s quantum mechanics and the Euclidean approach,
see also Section 3). The latter has also permitted to exploit probabilistic as
well as classical statistical mechanical methods in quantum (field) theory).
Let us point out that stochastic processes have been used in quantum
theory both in an instrumental way (e.g., for deriving spectral esti-
mates (54, 55, 71)) and in a conceptual way (e.g., in stochastic mechanics or in
the theory of Schrödinger processes, see, e.g., refs. 1–49, 52, 69, 70, 77, and
references therein).

2. SOME BASIC ELEMENTS AND NEW DEVELOPMENTS IN THE

THEORY OF FEYNMAN PATH INTEGRALS

The representation (7) in Section 1 of the solution of Schrödinger
equation was already presented heuristically by Feynman in his thesis in
the forties, following a suggestion by Dirac. Let us rewrite it with the
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(reduced) Planck’s constant ( inserted and with k0 instead of f for initial
condition. Schrödinger equation is then

˛ i(
“

“t k=−
(
2

2m Dk+Vk

k(0, x)=k0(x)
(8)

(7) is understood by Feynman as a way to compute the wave function k at
time t evaluated at the point x ¥ Rd as an ‘‘integral over histories,’’ that is
as an integral over all possible paths with finite energy arriving at time t at
the point x:

k(t, x)=‘‘ F
{c | c(t)=x}

e
i
(
St(c)k0(c(0)) Dc ’’ (9)

St(c) being the classical action (introduced in Section 1) evaluated along
the path c, and Dc an heuristic ‘‘flat’’ measure on the space of paths. We
remark that (7) resp. (9) are entirely similar to (6) resp. (5) (taking into
account (2)). In (9) we write c instead of w as used in (5), just to stress that
we are in the framework of Feynman rather than in the one of probabilistic
integrals.

Even if more than 50 years have passed, Feynman’s formula is still
fascinating, as it shows the link between the classical description of the
physical world and the quantum one. In fact it provides a quantization
method, allowing to associate, at least heuristically, a quantum evolution
to each classical Lagrangian. Moreover it allows the study of the ‘‘semi-
classical limit,’’ that is the study of the behavior of the solution of the
Schrödinger equation taking into account that ( is small. Indeed since ( is
small the integrand is strongly oscillating and the main contribution to the
integral should come from those paths c which make stationary the phase
function S. These, by Hamilton’s least action principle, are the classical
orbits of the system.

Formula (9), as it stands, has not of course a well defined mathemati-
cal meaning. Indeed neither the normalization constant, nor the ‘‘flat
measure’’ Dc on the space of paths are well defined. Formula (1) in Sec-
tion 1 was derived by Kac in 1949 precisely as a rigorous replacement,
valid for the corresponding heat equation, of the heuristic expression (9).
As we already mentioned in Section 1, (1) is a well defined integral on the
space of continuous paths with respect to a s-additive measure Px (for
paths starting at x). Such an interpretation is not possible for the heuristic
‘‘Feynman measure’’ e

i
(
St(c) Dc. Indeed Cameron (33) proved that the latter

cannot be realized as a complex s-additive measure, even on very nice
subsets.
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Nevertheless, under suitable hypothesis on the potential V and on the
initial datum k0, one can indeed give to the integral (9) a rigorous mathe-
matical meaning as a linear continuous functional on a suitable class of
functions, as is expressed by (7) (whose probabilistic counterpart is (6)). In
the literature several realizations of the ‘‘Feynman functional’’ can be found,
for instance by means of analytic continuation, (33, 35, 41, 52, 60, 64, 66, 67, 73, 74) by
non standard analysis (7) or as an infinite dimensional distribution in the
framework of Hida calculus, (40, 49) or via ‘‘complex Poisson measures,’’ (1, 65)

or as a infinite dimensional oscillatory integral. (4, 18, 42, 50, 51) The latter
method is particularly interesting as it is the only one by which a develop-
ment of an infinite dimensional version of the stationary phase method and
the corresponding study of the semiclassical limit (( a 0) of the solution has
been performed.

In the following we shall denote by H a (finite or infinite dimen-
sional) real separable Hilbert space, whose elements, resp. scalar product,
will be denoted by x, y ¥H, resp by Ox, yP. f:HQ C will be a function
on H and Q: D(Q) ıHQH an invertible, densely defined and self-
adjoint operator.

We shall denote by M(H) the Banach space of the complex bounded
variation measures on H, endowed with the total variation norm, that is:

m ¥M(H), ||m||=sup C
i
|m(Ei)|,

where the supremum is taken over all sequences {Ei} of pairwise disjoint
Borel subsets of H, such that 1i Ei=H. M(H) is a Banach algebra,
where the product of two measures m f n is by definition their convolution:

m f n(E)=F
H

m(E−x) n(dx), m, n ¥M(H)

and the unit element is the vector d0.
We will denote by F(H) the space of complex functions on H which

are Fourier transforms of measures belonging to M(H), that is:

f:HQ C f(x)=F
H
e iOx, bPmf(db) — m̂f(x).

F(H) is a Banach algebra of functions, where the product is the pointwise
one, the unit element is the function 1, i.e., 1(x)=1 -x ¥H and the norm
is given by ||f||=||mf ||.
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Let us assume first of all that H is finite dimensional, i.e., H=Rn,
and define the ‘‘Fresnel integral’’

F2 e
i
2(

Ox, QxPf(x) dx

in the following way

Definition 1. A function f: RnQ C is Fresnel integrable with
respect to Q if and only if for each f ¥S(Rn) such that f(0)=1 the limit

lim
EQ 0
(2pi()−n/2 F e

i
2(

Ox, QxPf(x) f(Ex) dx (10)

exists and is independent of f. In this case the limit is called the Fresnel
integral of f with respect to Q and denoted by

F2 e
i
2(

Ox, QxPf(x) dx. (11)

The description of the full class of Fresnel integrable functions is not
easy, but one can find some interesting subsets of it. Indeed the following
result holds: (18, 42)

Theorem 1. Let f ¥F(Rn). Then f is Fresnel integrable and its
Fresnel integral with respect to Q is given by:

F2 e
i
2( Ox, QxPf(x) dx=(det Q)−1/2 F e

−i(
2 Oa, Q−1aP

mf(da). (12)

The definition of oscillatory integral can be extended to the case where
H is infinite dimensional. (4, 42)

Definition 2. A function f:HQ C is Fresnel integrable with
respect to Q if and only if for each sequence Pn of projectors onto
n-dimensional subspaces of H, such that Pn [ Pn+1 and Pn Q 1 strongly
as nQ., (1 being the identity operator in H), the finite dimensional
approximations of the Fresnel integral of f with respect to Q

(2pi()−n/2 F
PnH
e
i
2(

OPnx, QPnxPf(Pnx) d(Pnx),
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are well defined and the limit

lim
nQ.
(2pi()−n/2 F

PnH
e
i
2(

OPnx, QPnxPf(Pnx) d(Pnx) (13)

exists and is independent of the sequence {Pn}.
In this case the limit is called the Fresnel integral of f with respect to

Q and is denoted by

F2 e
i
2(

Ox, QxPf(x) dx.

One can prove (4, 42) that if f ¥F(H) then f p Pn ¥F(Pn(H)) and f is
Fresnel integrable. Moreover, if Q−I is trace class, the following Cameron-
Martin–Parseval type formula holds:

F2 e
i
2(

Ox, QxPf(x) dx=(det Q)−1/2 F
H

e−
i(
2
Oa, Q−1aP

mf(da) (14)

where det Q=|det Q| e−pi Ind Q is the Fredholm determinant of the operatorQ,
|det Q| is its absolute value and Ind(Q) is the number of negative eigen-
values of the operator Q, counted with their multiplicity.

In this setting one can give a rigorous mathematical interpretation
of formula (9) in terms of an infinite dimensional oscillatory integral on
a suitable Hilbert space of paths. Let us consider the Sobolev space
H=H1, 2(t) ([0, t], R

d), that is the space of absolutely continuous functions
c: [0, t]Q Rd, c(t)=0, such that > t0 |ċ(s)|2 ds <., endowed with the
following scalar product

Oc1, c2P=F
t

0
ċ1(s) · ċ2(s) ds.

H is essentially the ‘‘Cameron-Martin space.’’
Let us consider, on the other hand, the Schrödinger equation in

L2(Rd)

i(
“

“t
k=Hk (15)

with initial datum k|t=0=k0, where H=− (
2

2 D+12 xW
2x+VŒ(x), where

x ¥ Rd, W2 \ 0 is a d×d matrix, VŒ ¥F(Rd) and k0 ¥F(Rd) 5 L2(Rd) (we
set m=1 for simplicity of notation).
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By considering the operator L on H1, 2(t) ([0, t], R
d) given by

Oc, LcP — F
t

0
c(s) W2c(s) ds,

and the functionW: Ht Q C

W(c) — F
t

0
VŒ(c(s)+x) ds+2xW2 F

t

0
c(s) ds, c ¥H1, 2(t) ,

formula (9)

‘‘const F
{c | c(t)=x}

e
i
(
>t0 (

1
2
ċ(s)2− 1

2
c(s) W2c(s)−VŒ(c(s))) ds

k0(c(0)) Dc’’

can be interpreted as the rigorously defined infinite dimensional oscillatory
integral on H1, 2(t) ([0, t], R

d)

F2 e
i
2(

Oc, (I+L) cPe−
i
(
W(c)

k0(c(0)+x) dc. (16)

Moreover one can prove (4, 42) that (16) is a representation of the solution of
(15) evaluated in x ¥ Rd at time t.

2.1. Application to the Quantum Theory of Measurement

It is possible to extend the definition of infinite dimensional oscilla-
tory integral in order to consider complex-valued phase functions. This
allows to give Feynman path integrals representations to a larger class of
Schrödinger equations, with applications to the quantum theory of mea-
surement (see refs. 13 and 14).

Theorem 2. Let H be a real separable Hilbert space, let l ¥H be a
vector in H and let L1 and L2 be two self-adjoint, trace class commuting
operators on H such that I+L1 is invertible and L2 is non negative. Let
moreover f:HQ C be the Fourier transform of a complex bounded
variation measure mf on H:

f(c)=m̂f(c), f(c)=F
H

e iOc, aPmf(da).
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Then the infinite dimensional oscillatory integral (with complex phase)

F2
H

e
i
2(

Oc, (I+L) cPeOl, cPf(c) dc

is well defined and it is given by

F2
H

e
i
2(

Oc, (I+L) cPeOl, cPf(c) dc=det(I+L)−1/2 F
H

e
−i(
2

Oa−il, (I+L)−1 (a−il)P
mf(da)

(17)

(L being the operator on the complexification HC of the real Hilbert space
H given by L=L1+iL2 ).

Equation (17) can be recognized as an analytic continuation of the
Cameron-Martin–Parseval formula (14).

The latter theorem can be applied to the solution of a particular
stochastic Schrödinger equation describing the continuous non-demolition
measurement of the position of a quantum particle: the Belavkin equation.5

5 Related equations have been proposed also by other physicists, for instance in work by
Diosi, Ghirardi, Rimini and Weber, Gisin, Mensky (see the references in refs. 13 and 14).

It is well known that the continuous time evolution described by the ordi-
nary Schrödinger equation is valid if the quantum system is ‘‘undisturbed,’’
but if it is submitted to the measurement of one of its observables and
interacts with the measuring apparatus this is no longer true. Indeed the
state of the system after the measurement is the result of a random and
discontinuous change: the so-called ‘‘collapse of the wave function.’’ By
modeling the measuring apparatus with a one-dimensional bosonic field, by
assuming the interaction Hamiltonian has a particular form and by means
of the quantum stochastic calculus of Hudson and Parthasarathy, in 1987
V. P. Belavkin (30) proposed a stochastic partial differential equation
describing the selective dynamics of a d-dimensional particle submitted to
the measurement of one of its (possibleM-dimensional vector) observables,
described by the self-adjoint operator R on L2(Rd)

˛dk(t, x)=−
i
(
Hk(t, x) dt− l2 R

2k(t, x) dt+`l Rk(t, x) dW(t)

k(0, x)=k0(x) (t, x) ¥ [0, T]×Rd
(18)

where H is the quantum mechanical Hamiltonian, W is an M-dimensional
Brownian motion on a probability space (W,F, P), dW(t) is the Ito dif-
ferential and l > 0 is a coupling constant, which is proportional to the
accuracy of the measurement. In the particular case of the description of
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the continuous measurement of position one has that R is the operator
multiplication by x, so that Eq. (18) assumes the following form:

˛dk(t, x)=−
i
(
Hk(t, x) dt− l2 x

2k(t, x) dt+`l xk(t, x) dW(t)

k(0, x)=k0(x) (t, x) ¥ [0, T]×Rd,
(19)

while in the case of momentum measurement, (where R=−i(N) one has:

˛dk(t, x)=−
i
(
Hk(t, x) dt+l(

2

2 Dk(t, x) dt− i`l ( Nk(t, x) dW(t)

k(0, x)=k0(x) (t, x) ¥ [0, T]×Rd.
(20)

Even before Belavkin, M. B. Mensky had proposed a heuristic formula
for the selective dynamics of a particle whose position is continuously
observed. According to Mensky the state of the particle at time t if the
observed trajectory is the path [a] is given by the ‘‘restricted path
integrals’’

k(t, x, [a])=‘‘ F
{c(t)=x}

e
i
(
St(c)e−l >

t
0 (c(s)−a(s))

2 ds
f(c(0)) Dc’’. (21)

One can see that, as an effect of the correction term e−l >
t
0 (c(s)−a(s))

2 ds due to
the measurement, the paths c giving the main contribution to the integral
(21) are those closer to the observed trajectory [a]. By means of Theorem 2
one can prove a Feynman path integral representation to the solution of
Belavkin equation and give a rigorous mathematical meaning to Mensky’s
heuristic formula. Indeed in the case of position measurement, the follow-
ing holds: (13)

Theorem 3. Let V and f be Fourier transform of finite complex
measures on Rd. Then there exists a solution of the stochastic Schrödinger
equation (19) and it can be represented by the following infinite dimen-
sional oscillatory integral with complex phase on the Hilbert space H=
H1, 2(t) ([0, t], R

d)

k(t, x)=F2 e
i
(
St(c)−l >

t
0 (c(s)+x)

2 ds

· e >
t
0 `l(c(s)+x) dW(s) dsf(c(0)+x) dc

=e−l |x|
2 t+`l x ·w(t) F2

H

e
i
2(

Oc, (I+L) cPeOl, cPe−2l( >
t
0 x · c(s) ds

· e−i >
t
0 V(x+c(s)) dsf(c(0)+x) dc
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where l ¥H, l(s)=`l > ts w(y) dy and

L:HC QHC, Oc1, Lc2P=−2il( F
t

0
c1(s) c2(s) ds.

In the case of the Belavkin equation describing momentum measure-
ment the stochastic term plays the role of a complex random potential
depending on the momentum of the particle. In this case one has to use a
‘‘phase space Feynman path integral,’’ that is an infinite dimensional oscil-
latory integral on the Hilbert space H1, 2(t) ([0, t], R

d)×L2([0, t]) —H×Lt
(see refs. 12 and 14).

Theorem 4. Let V and f be Fourier transform of finite complex
measures on Rd. Then there exist a solution of the Cauchy problem (20),
which can be represented by the following ‘‘phase space Feynman path
integral:’’

k(t, 0, w)=F2
H×Lt

e
i
(
>t0 (p(s) q̇(s)−

p2(s)
2
) dse−l >

t
0 p(s)

2 ds

· e−
i
(
>t0 V(q(s)) dse `l >

t
0 p(s) dW(s)f(q(0)) dq dp

=F2
Ht ×Lt

e
i
(
O(q, p), A(q, p)PeO(q, p), lPe−

i
(
>t0 V(q(s)) dsf(q(0)) dq dp (22)

where by (q, p) we denote a generic element of H×Lt, q ¥H, p ¥ Lt, A is
the operator on the complexification of H×Lt given by

O(q, p), A(q, p)P=2 F
t

0

1 p(s) q̇(s) ds−(1−2il() F t
0
p2(s)2 ds

and l ¥Ht×Lt.

2.2. Extension of the Theory of Feynman Path Integrals to the Case

of Polynomially Growing Phase Functions

The examples discussed in 3.1 show that the infinite dimensional oscil-
latory integrals are a powerful tool, with application to a larger class of
(deterministic resp. stochastic) Schrödinger equations. The main restriction
of such integrals has been so far the fact that the potentials V for which a
Feynman path integral representation of the solution of the corresponding
Schrödinger equation can be defined are of the type ‘‘quadratic plus
bounded perturbation.’’ (4, 18, 42) Indeed, in order to define the infinite
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dimensional oscillatory integral, the correction VŒ to the harmonic oscilla-
tor potential 12 xW

2x has to belong to F(Rd), so that it is bounded. An
extension to unbounded potentials which are Laplace transforms of
bounded measures has been developed in refs. 6 and 61. It includes some
exponentially growing potentials but does not cover the case of potentials
which are polynomials of degree larger than 2. In fact the problem is not
simple, as it has been proved (75) that in one dimension, if the potential is
time independent and super-quadratic in the sense that V(x) \ C(1+|x|)2+E

at infinity, C > 0 and E > 0, then the fundamental solution of time depen-
dent Schrödinger equation is nowhere C1. In refs. 20 and 21 a solution to
the problem of providing a direct rigorous Feynman path integral defini-
tion for such potentials (without going to the tool of analytic continuation
from a representation of the heat equation as for instance in refs. 31, 41,
and 67) is given and a Feynman path integral representation for the solu-
tion of the Schrödinger equation for an anharmonic oscillator potential
V(x)=1

2 xW
2x+lx4, l > 0, is developed. The first step is the definition and

the computation of the oscillatory integral >H e
i
(
F(x)f(x) dx, when H is

finite dimensional and the phase function F(x)=P(x) is an arbitrary even
polynomial with positive leading coefficient. In this case a generalization of
Theorem 1 can be proved. The main tool is the following lemma, which can
be proved by using the analyticity of ekz+

i
(
P(z), z ¥ C, and a change of inte-

gration contour (see ref. 20).

Lemma 1. Let P: RNQ R be an even polynomial with positive
leading coefficient. Then the Fourier transform of the distribution e

i
(
P(x):

F̃(k)=F
R
N
e ik · xe

i
(
P(x) dx, ( ¥ R0{0} (23)

is an entire bounded function and admits the following representation:

F̃(k)=e iNp/4M F
R
N
e ie

ip/4Mk ·xe
i
(
P(eip/4Mx) dx, ( > 0 (24)

or

F̃(k)=e−iNp/4M F
R
N
e ie

−ip/4Mk ·xe
i
(
P(e−ip/4Mx) dx, ( < 0. (25)

Theorem 5. Let f ¥F(RN), f=m̂f. Then the generalized Fresnel
integral

I(f) — F e
i
(
P(x)f(x) dx, ( ¥ D̄0{0}
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is well defined and it is given by the formula of Parseval’s type:

F e
i
(
P(x)f(x) dx=F F̃(k) mf(dk), (26)

where F̃(k) is given by (24) or (25)

F̃(k)=F e ikxe
i
(
P(x) dx.

The integral on the r.h.s. of (26) is absolutely convergent (hence it can be
understood in Lebesgue sense).

It is particularly interesting to examine the case in which P(x)=
1
2 x(I−B) x−lA(x, x, x, x), where ( > 0, l [ 0, I, B are N×N matrices,
I being the identity, (I−B) is symmetric and strictly positive and
A: RN×RN×RN×RNQ R is completely symmetric and positive fourth
order covariant tensor on RN.

Lemma 2. Under the assumptions above the Fourier transform of

the distribution e
i
2(
x · (I−B) x

(2pi()N/2
e
−il
(
A(x, x, x, x):

F̃(k)=F
R
N
e ik ·x
e
i
2(
x · (I−B) x

(2pi()N/2
e
−il
(
A(x, x, x, x) dNx (27)

is a bounded complex-valued entire function on RN admitting the following
representation

F̃(k)=F
R
N
e ie

ip/4k ·x e
− 1
2(
x · (I−B) x

(2p()N/2
e
il
(
A(x, x, x, x) dNx

=E[e ie
ip/4k ·xe

il
(
A(x, x, x, x)e

1
2(
x ·Bx] (28)

where E denotes the expectation value with respect to the centered Gaussian
measure on RN with covariance operator (I.

Theorem 6 (Parseval equality). Let f ¥F(RN), f=m̂f. Then,
under the assumptions above, the generalized Fresnel integral

I(f) — F2 e
i
2(
x · (I−B) xe

−il
(
A(x, x, x, x)f(x) dx
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is well defined and it is given by:

F2 e
i
2(
x · (I−B) xe

−il
(
A(x, x, x, x)f(x) dx=F F̃(k) mf(dk), (29)

where F̃(k) is given by Eq. (28). Moreover if mf is such that -x ¥ RN the

integral > e−
`2
2
kx |mf | (dk) is convergent and the positive function g: RnQ R,

defined by g(x)=e
1
2(
x ·Bx > e−

`2
2
kx |mf | (dk) is summable with respect to the

centered Gaussian measure on RN with covariance (I, then f extends to an
analytic function on CN and the corresponding generalized Fresnel integral
is given by:

F2
R
N

e
i
2(
x · (I−B) x

(2pi()N/2
e
−il
(
P(x)f(x) dx=E[e

il
(
P(x)e

1
2(
x ·Bxf(e ip/4x)]. (30)

Remark 1. In ref. 20 general polynomial phase functions are also
discussed and analytic resp. Borel summable expansions of (24) in powers
of ( are proved

The result in Theorem 6 has been generalized to the infinite dimen-
sional case.

Let H be a real separable infinite dimensional Hilbert space, with
inner product O , P and norm | |. Let n be the finitely additive cylinder
measure on H, defined by its characteristic functional n̂(x)=e−

(

2
|x|2. Let || ||

be a ‘‘measurable’’ norm on H, that is || || is such that for every E > 0 there
exist a finite-dimensional projection PE:HQH, such that for all P + PE
one has n({x ¥H | ||P(x)|| > E}) < E, where P and PE are called orthogonal
(P + PE ) if their ranges are orthogonal in (H, O , P). One can easily verify
that || || is weaker than | |. Denote by B the completion of H in the
|| ||-norm and by i the continuous inclusion of H in B, one can prove that
m — n p i−1 is a countably additive Gaussian measure on the Borel subsets
of B. The triple (i,H, B) is called an abstract Wiener space. (48, 62) Given
y ¥Bg one can easily verify that the restriction of y to H is continuous
on H, so that one can identify Bg as a subset of H and each element
y ¥Bg can be regarded as a random variable n(y) on (B, m). Given an
orthogonal projection P in H, with

P(x)=C
n

i=1
Oei, xP ei
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for some orthonormal e1,..., en ¥H, the stochastic extension P̃ of P on B is
well defined by

P̃( · )=C
n

i=1
n(ei)( · ) ei.

Given a function f:HQB1, where (B1, || ||B1 ) is another real separable
Banach space, the stochastic extension f̃ of f to B exists if the functions
f p P̃: BQB1 converge to f̃ in probability with respect to m as P con-
verges strongly to the identity in H. Let A:H×H×H×HQ R be a
completely symmetric positive covariant tensor operator on H such that
the map V:HQ R+, xW V(x) — A(x, x, x, x) is continuous in the || ||
norm. As a consequence V is continuous in the | |-norm, moreover it can be
extended by continuity to a random variable V̄ on B, with V̄|H=V.
Moreover given a self-adjoint trace class operator B:HQH, the quadra-
tic form on H×H:

x ¥HW Ox, BxP

can be extended to a random variable on B, denoted again by O · , B · P. In
this setting one can prove the following generalization of Theorem 6. (21)

Theorem 7. Let B be self-adjoint trace class, (I−B) strictly posi-
tive, l [ 0 and f ¥F(H), f — m̂f, and let us suppose that the bounded
variation measure mf satisfies the following assumption

F
H

e
(

4
Ok, (I−B)−1 kP |mf | (dk) <+.. (31)

Then the infinite dimensional oscillatory integral

F2
H

e
i
2(

Ox, (I−B) xPe−i
l

(
A(x, x, x, x)f(x) dx (32)

exists and is given by:

F
H

E[e in(k)(w) e
ip/4
e
1
2(

Ow, BwPe i
l

(
V̄(w)] mf(dk).
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It is also equal to:

E[e i
l

(
V̄(w)e

1
2(

Ow, BwPf(e ip/4w)] (33)

E denotes the expectation value with respect to the Gaussian measure m

on B.

Such a theory allows an extension of the class of potentials for which
an infinite dimensional oscillatory integral representation of the solution of
the corresponding Schrödinger equation can be defined. Let us consider the
Schrödinger equation

i(
d
dt

k=Hk (34)

on L2(Rd) for an anharmonic oscillator Hamiltonian H of the following
form:

H=−
(
2

2
D+
1
2
xW2x+lC(x, x, x, x), (35)

where C is a completely symmetric positive fourth order covariant tensor
on Rd, W is a positive symmetric d×d matrix, l \ 0 a positive constant. It
is well known, see ref. 69, that H is essentially self-adjoint on C.0 (R

d). We
are going to show the way to give mathematical meaning to the ‘‘Feynman
path integral’’ representation of the solution of Eq. (34):

k(t, x)=‘‘ F
c(0)=x

e
i
(
>t0
ċ(s)2

2
ds− i

(
>t0 [

1
2
c(s) W2c(s)+lC(c(s), c(s), c(s), c(s))] ds

k0(c(t)) Dc’’,

as the analytic continuation (in the parameter l) of an infinite dimensional
generalized oscillatory integral on a suitable Hilbert space.

Let us consider the Cameron-Martin space Ht, that is the Hilbert
space of absolutely continuous paths c: [0, t]Q Rd, with c(0)=0 and inner
product Oc1, c2P=> t0 ċ1(s) ċ2(s) ds. The cylindrical Gaussian measure on Ht
with covariance operator the identity extends to a s-additive measure on
the Wiener space Ct={w ¥ C([0, t]; Rd) | c(0)=0}: the Wiener measureW.
(i, Ht, Ct) is an abstract Wiener space.

Let us consider moreover the Hilbert space H=Rd×Ht, and the
Banach space B=Rd×Ct endowed with the product measureN(dx)×W(dw),
N being the Gaussian measure on Rd with covariance equal to the d×d
identity matrix. (i,H, B) is an abstract Wiener space.
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Let us consider two vectors f, k0 ¥ L2(Rd) 5F(Rd).We are going to
define the following infinite dimensional oscillatory integral on H:

‘‘ F
R
d×Ht

f̄(x) e
i
2(

>t0 ċ(s)
2 dse−

i
2(

>t0 [(c(s)+x) W
2(c(s)+x) ds

· e
il
(
C(c(s)+x, c(s)+x, c(s)+x, c(s)+x) ds

k0(c(t)+x) dx Dc’’. (36)

Let us consider the operator B:HQH given by:

(x, c)0 (y, g)=B(x, c),

y=tW2x+W2 F
t

0
c(s) ds, g(s)=W2x 1 ts−s

2

2
2−F s

0
F
u

t
W2c(r) dr du

(37)

and the fourth order tensor operator A given by:

A((x1, c1), (x2, c2), (x3, c3), (x4, c4))

=F
t

0
C(c1(s)+x1, c2(s)+x2, c3(s)+x3, c4(s)+x4) ds. (38)

Let us consider moreover the function f:HQ C given by

f(x, c)=(2pi()d/2 e−
i
2(
|x|2

f̄(x) k0(c(t)+x) (39)

with this notation expression (36) can be written in the following form:

F2
H

e
i
2(
(|x|2+|c|2)e−

i
2(

O(x, c), B(x, c)Pe−
il
(
A((x, c), (x, c), (x, c), (x, c))f(x, c) dx dc. (40)

In the following we will denote by Wi, i=1,..., d, the eigenvalues of
the matrix W.

Theorem 8. Let us assume that l [ 0, and that for each i=1,..., d
the following inequalities are satisfied

Wit <
p

2
, 1−Wi tan(Wit) > 0. (41)

Let f, k0 ¥ L2(Rd) 5F(Rd). Let m0 be the complex bounded variation
measure on Rd such that m̂0=k0. Let mf be the complex bounded variation
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measure on Rd such that m̂f(x)=(2pi()d/2 e
− i
2(
|x|2f̄(x). Assume in addition

that the measures m0, mf satisfy the following assumption:

F
R
d
F
R
d
e
(

4
xW−1 tan(Wt) x

e (y+cos(Wt)
−1 x)(1−W tan(Wt))−1 (y+cos(Wt)−1 x) |m0 | (dx) |mf | (dy) <..

(42)

Then the function f:HQ C, given by (39) is the Fourier transform of a
bounded variation measure mf on H satisfying

F
H

e
(

4
O(y, g), (I−B)−1 (y, g)P |mf | (dy dg) <. (43)

(B being given by (37)) and the infinite dimensional oscillatory integral (40)
is well defined and is given by:

F
R
d×Ht

1F
R
d×Ct
e ie

ip/4(x ·y+`( n(c)(w))e
1
2(

>t0 (`( w(s)+x) W
2(`( w(s)+x) ds

· e i
l

(
>t0 C(`( w(s)+x,`( w(s)+x,`( w(s)+x,`( w(s)+x) dsW(dw)

e−
|x|2

2(

(2p()d/2
dx2 mf(dy dc).

(44)

This is also equal to

(i)d/2 F
R
d×Ct
e i
l

(
>t0 C(`( w(s)+x,`( w(s)+x,`( w(s)+x,`( w(s)+x) ds

· e
1
2(

>t0 (`( w(s)+x) W
2(`( w(s)+x) ds

f̄(e ip/4x) k0(e ip/4`( w(t)+e ip/4x) W(dw) dx.
(45)

The oscillatory integral (40) can heuristically be written in the follow-
ing form:

(f, k(t))=‘‘ F
R
d

f̄(x) F
{c | c(t)=x}

e
i
(
St(c)k0(c(0)) Dc dx’’

and interpreted as a rigorous realization of the Feynman path integral
representing the inner product between the vector f ¥ L2(Rd) and the solu-
tion of the Schrödinger equation (34) with initial datum k0. We remark
that the infinite dimensional oscillatory integral (40) is well defined only if
l [ 0, but its expressions in terms of the absolutely convergent integrals
(44) and (45) are well defined also for each l ¥ R. In fact one can verify
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directly that the absolutely convergent integrals (44) and (45) are analytic
functions of the complex variable l if Im(l) > 0, continuous in Im(l)=0
and coinciding with (40) if l [ 0. Moreover one can prove that when l \ 0
the Gaussian integrals (44) and (45) represent the inner product Of, k(t)P,
where k(t) is the solution of the Schrödinger equation.

Theorem 9. Let f, k0 ¥S(Rd) satisfy assumption (42). Then (44)
and (45) represent, for l \ 0, the scalar product between f and the solution
of the Schrödinger equation (34).

3. A NOTE ON PROBABILISTIC METHODS IN QUANTUM FIELD

THEORY

Extensions of the methods discussed in Sections 1 and 2 to infinite
dimensional state spaces have also been studied, particularly in relations to
applications to quantum field theory.

As for the Feynman path integrals we simply mention the rigorous
construction of the Chern–Simons model of gauge fields in 3 space-time
dimensions and the corresponding rigorous computation of topological
invariants using the theory of infinite dimensional oscillatory integrals
(Fresnel integrals), see refs. 15, 27, 28, 63, and references therein.

As for the heat semigroup evolutions, associated infinite dimensional
processes and their connections to Euclidean quantum fields let us just
mention that the measure which plays a corresponding role to the one
mentioned in Section 1, e−>

y

0 V(w(s)) dsPx(dw), is (for Euclidean scalar
quantum fields over the Euclidean space-time Rd)

mv(dw)=‘‘Z−1e−l >Rd v(w(y)) dym(dw)’’ (46)

where Z — ‘‘> e−l >Rd v(w(y)) dym(dw)’’, l > 0, v: RQ R being an ‘‘interaction
density,’’ m being Nelson’s free field measure (describing free Euclidean
quantum fields over Rd of mass m > 0). w is the Euclidean coordinate
process, representing the Euclidean quantum field (over Rd).

For d=2, mv can be given a rigorous meaning (for suitable v), see,
e.g., refs. 19, 45, 49, and 71.

mv was given a further meaning as ‘‘equilibrium measure’’ for a
stochastic evolution equation, the ‘‘stochastic quantization equation,’’ in
work by Jona-Lasinio and coworkers (56) (see also refs. 22–25). This has
given also a considerable momentum to the theory of stochastic partial
differential equations, see also, for instance, refs. 58 and 59. m itself can be
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looked upon as ‘‘convolution transform’’ of the Gaussian white noise
measure mGWN, (49) i.e.,

m=mGWN((`−D+m2)−1.), (47)

D being the Laplacian in L2(Rd) (see refs. 10 and 49).
Models constructed by replacing in (46), (47) mGWN by mPWN, with

mPWN a Poisson-type white noise measure have been constructed in recent
years and shown to satisfy, together with their vector-valued analogues, all
Morchio-Strocchi axioms for indefinite metric quantum fields, see refs. 9
and 11, and references therein.

Relativistic models with local interaction and non-trivial scattering
(even in 4-space-time dimensions!) have been constructed. (8) For recent
work on extending these models to curved space-times see ref. 47.

New connections with models of (classical) statistical mechanics (of
particles) have emerged from this work, see refs. 9 and 46.

Previous work on the use of Poisson measures in the study of quantum
models is in ref. 39.
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